A New Lower Bound on the Number of Perfect Matchings in Cubic Graphs
نویسندگان
چکیده
We prove that every n-vertex cubic bridgeless graph has at least n/2 perfect matchings and give a list of all 17 such graphs that have less than n/2 + 2 perfect matchings.
منابع مشابه
Perfect Matchings in Edge-Transitive Graphs
We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...
متن کاملA superlinear bound on the number of perfect matchings in cubic bridgeless graphs
Lovász and Plummer conjectured in the 1970’s that cubic bridgeless graphs have exponentially many perfect matchings. This conjecture has been verified for bipartite graphs by Voorhoeve in 1979, and for planar graphs by Chudnovsky and Seymour in 2008, but in general only linear bounds are known. In this paper, we provide the first superlinear bound in the general case.
متن کاملAverage connectivity and average edge-connectivity in graphs
Connectivity and edge-connectivity of a graph measure the difficulty of breaking the graph apart, but they are very much affected by local aspects like vertex degree. Average connectivity (and analogously, average edge-connectivity) has been introduced to give a more refined measure of the global “amount” of connectivity. In this paper, we prove a relationship between the average connectivity a...
متن کاملOn the Eccentric Connectivity Index of Unicyclic Graphs
In this paper, we obtain the upper and lower bounds on the eccen- tricity connectivity index of unicyclic graphs with perfect matchings. Also we give some lower bounds on the eccentric connectivity index of unicyclic graphs with given matching numbers.
متن کاملAn improved linear bound on the number of perfect matchings in cubic graphs
We show that every cubic bridgeless graph with n vertices has at least 3n/4 − 10 perfect matchings. This is the first bound that differs by more than a constant from the maximal dimension of the perfect matching polytope.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Discrete Math.
دوره 23 شماره
صفحات -
تاریخ انتشار 2009